Source code for mala.network.objective_base

"""Objective function for all training based hyperparameter optimizations."""

import numpy as np
from optuna import Trial, TrialPruned

from mala.network.hyperparameter_optuna import HyperparameterOptuna
from mala.network.hyperparameter_oat import HyperparameterOAT
from mala.network.network import Network
from mala.network.trainer import Trainer
from mala.common.parameters import Parameters
from mala import printout


[docs] class ObjectiveBase: """ Represents the objective function of a training process. This is usually the result of a training of a network. Parameters ---------- params : mala.common.parametes.Parameters Parameters used to create this objective. data_handler : mala.datahandling.data_handler.DataHandler datahandler to be used during the hyperparameter optimization. """ def __init__(self, params, data_handler): self.params: Parameters = params self._data_handler = data_handler # We need to find out if we have to reparametrize the lists with the # layers and the activations. contains_single_layer = any( map( lambda p: "ff_neurons_layer" in p.name, self.params.hyperparameters.hlist, ) ) contains_multiple_layer_neurons = any( map( lambda p: "ff_multiple_layers_neurons" in p.name, self.params.hyperparameters.hlist, ) ) contains_multiple_layers_count = any( map( lambda p: "ff_multiple_layers_count" in p.name, self.params.hyperparameters.hlist, ) ) if contains_multiple_layer_neurons != contains_multiple_layers_count: print( "You selected multiple layers to be optimized, but either " "the range of neurons or number of layers is missing. " "This input will be ignored." ) self._optimize_layer_list = contains_single_layer or ( contains_multiple_layer_neurons and contains_multiple_layers_count ) self._optimize_activation_list = list( map( lambda p: "layer_activation" in p.name, self.params.hyperparameters.hlist, ) ).count(True) self._trial_type = self.params.hyperparameters.hyper_opt_method def __call__(self, trial): """ Get objective value for a trial (=set of hyperparameters). Parameters ---------- trial : optuna.trial.Trial A trial is a set of hyperparameters; can be an optuna based trial or simply a OAT compatible list. """ # Parse the parameters included in the trial. self.parse_trial(trial) if ( self._trial_type == "optuna" and self.params.hyperparameters.pruner == "naswot" ): if trial.should_prune(): raise TrialPruned() # Train a network for as often as the user desires. final_validation_loss = [] for i in range( 0, self.params.hyperparameters.number_training_per_trial ): test_network = Network(self.params) test_trainer = Trainer( self.params, test_network, self._data_handler ) test_trainer.train_network() final_validation_loss.append(test_trainer.final_validation_loss) if ( self._trial_type == "optuna" and self.params.hyperparameters.pruner == "multi_training" ): # This is a little bit hacky, since report is actually # meant for values DURING training, but we instead # use it for one of the losses during multiple trainings. # It should not pose a problem though. trial.report(test_trainer.final_validation_loss, i) if trial.should_prune(): raise TrialPruned() if self.params.hyperparameters.number_training_per_trial > 1: printout("Losses from multiple runs are: ", min_verbosity=2) printout(final_validation_loss, min_verbosity=2) if self.params.hyperparameters.trial_ensemble_evaluation == "mean": return np.mean(final_validation_loss) elif ( self.params.hyperparameters.trial_ensemble_evaluation == "mean_std" ): mean = np.mean(final_validation_loss) # Cannot calculate the standar deviation of a bunch of infinities. if np.isinf(mean): return mean else: return np.mean(final_validation_loss) + np.std( final_validation_loss ) else: raise Exception( "No way to estimate the trial metric from ensemble" " training provided." )
[docs] def parse_trial(self, trial): """ Parse a trial into a network architecture. Parameters ---------- trial A trial is a set of hyperparameters; can be an optuna based trial or simply a OAT compatible list. """ if self._trial_type == "optuna": self.parse_trial_optuna(trial) elif self._trial_type == "oat": self.parse_trial_oat(trial) else: raise Exception( "Cannot parse trial, unknown hyperparameter" " optimization method." )
[docs] def parse_trial_optuna(self, trial: Trial): """ Parse an optuna style trial into the params attribute. Parameters ---------- trial : optuna.trial.Trial. A set of hyperparameters encoded by optuna. """ if self._optimize_layer_list: self.params.network.layer_sizes = [ self._data_handler.input_dimension ] if self._optimize_activation_list > 0: self.params.network.layer_activations = [] # Some layers may have been turned off by optuna. turned_off_layers = [] # This is one because of the input layer. layer_counter = 1 par: HyperparameterOptuna for par in self.params.hyperparameters.hlist: if par.name == "learning_rate": self.params.running.learning_rate = par.get_parameter(trial) # If the user wants to optimize multiple layers simultaneously, # we have to parse to parameters at the same time. elif par.name == "ff_multiple_layers_neurons": neurons_per_layer = par.get_parameter(trial) number_layers = 0 max_number_layers = 0 other_par: HyperparameterOptuna for other_par in self.params.hyperparameters.hlist: if other_par.name == "ff_multiple_layers_count": number_layers = other_par.get_parameter(trial) max_number_layers = max(other_par.choices) if number_layers > 0: for i in range(0, number_layers): if neurons_per_layer > 0: self.params.network.layer_sizes.append( neurons_per_layer ) else: turned_off_layers.append(layer_counter) layer_counter += 1 if number_layers != max_number_layers: for i in range(number_layers, max_number_layers): turned_off_layers.append(layer_counter) layer_counter += 1 else: for i in range(0, max_number_layers): turned_off_layers.append(layer_counter) layer_counter += 1 elif par.name == "ff_multiple_layers_count": # This is parsed directly abve. pass elif "ff_neurons_layer" in par.name: if self.params.network.nn_type == "feed-forward": # Check for zero neuron layers; These indicate layers # that can be left out. layer_size = par.get_parameter(trial) if layer_size > 0: self.params.network.layer_sizes.append( par.get_parameter(trial) ) else: turned_off_layers.append(layer_counter) layer_counter += 1 elif "optimizer" == par.name: self.params.running.optimizer = par.get_parameter(trial) elif "mini_batch_size" == par.name: self.params.running.mini_batch_size = par.get_parameter(trial) elif "early_stopping_epochs" == par.name: self.params.running.early_stopping_epochs = par.get_parameter( trial ) elif "learning_rate_patience" == par.name: self.params.running.learning_rate_patience = par.get_parameter( trial ) elif "learning_rate_decay" == par.name: self.params.running.learning_rate_decay = par.get_parameter( trial ) elif "layer_activation" in par.name: pass else: raise Exception( "Optimization of hyperparameter ", par.name, "not supported at the moment.", ) # We have to process the activations separately, because they depend on # the results of the layer lists. layer_counter = 0 for par in self.params.hyperparameters.hlist: if "layer_activation" in par.name: if layer_counter not in turned_off_layers: self.params.network.layer_activations.append( par.get_parameter(trial) ) layer_counter += 1 if self._optimize_layer_list: self.params.network.layer_sizes.append( self._data_handler.output_dimension )
[docs] def parse_trial_oat(self, trial): """ Parse an OA based trial into the params attribute. Parameters ---------- trial : numpy.ndarray Row in an orthogonal array which respresents current trial. """ if self._optimize_layer_list: self.params.network.layer_sizes = [ self._data_handler.input_dimension ] if self._optimize_activation_list: self.params.network.layer_activations = [] # Some layers may have been turned off by optuna. turned_off_layers = [] # This is one because of the input layer. layer_counter = 1 par: HyperparameterOAT for factor_idx, par in enumerate(self.params.hyperparameters.hlist): if "learning_rate" == par.name: self.params.running.learning_rate = par.get_parameter( trial, factor_idx ) # If the user wants to optimize multiple layers simultaneously, # we have to parse to parameters at the same time. elif par.name == "ff_multiple_layers_neurons": neurons_per_layer = par.get_parameter(trial, factor_idx) number_layers = 0 max_number_layers = 0 other_par: HyperparameterOAT for other_idx, other_par in enumerate( self.params.hyperparameters.hlist ): if other_par.name == "ff_multiple_layers_count": number_layers = other_par.get_parameter( trial, other_idx ) max_number_layers = max(other_par.choices) if number_layers > 0: for i in range(0, number_layers): if neurons_per_layer > 0: self.params.network.layer_sizes.append( neurons_per_layer ) else: turned_off_layers.append(layer_counter) layer_counter += 1 if number_layers != max_number_layers: for i in range(number_layers, max_number_layers): turned_off_layers.append(layer_counter) layer_counter += 1 else: for i in range(0, max_number_layers): turned_off_layers.append(layer_counter) layer_counter += 1 elif par.name == "ff_multiple_layers_count": # This is parsed directly abve. pass elif "ff_neurons_layer" in par.name: if self.params.network.nn_type == "feed-forward": # Check for zero neuron layers; These indicate layers # that can be left out. layer_size = par.get_parameter(trial, factor_idx) if layer_size > 0: self.params.network.layer_sizes.append( par.get_parameter(trial, factor_idx) ) else: turned_off_layers.append(layer_counter) layer_counter += 1 elif "optimizer" == par.name: self.params.running.optimizer = par.get_parameter( trial, factor_idx ) elif "mini_batch_size" == par.name: self.params.running.mini_batch_size = par.get_parameter( trial, factor_idx ) elif "early_stopping_epochs" == par.name: self.params.running.early_stopping_epochs = par.get_parameter( trial, factor_idx ) elif "learning_rate_patience" == par.name: self.params.running.learning_rate_patience = par.get_parameter( trial, factor_idx ) elif "learning_rate_decay" == par.name: self.params.running.learning_rate_decay = par.get_parameter( trial, factor_idx ) elif "layer_activation" in par.name: pass else: raise Exception( "Optimization of hyperparameter ", par.name, "not supported at the moment.", ) # We have to process the activations separately, because they depend on # the results of the layer lists. layer_counter = 0 par: HyperparameterOAT for factor_idx, par in enumerate(self.params.hyperparameters.hlist): if "layer_activation" in par.name: if layer_counter not in turned_off_layers: self.params.network.layer_activations.append( par.get_parameter(trial, factor_idx) ) layer_counter += 1 if self._optimize_layer_list: self.params.network.layer_sizes.append( self._data_handler.output_dimension )