Source code for mala.datageneration.ofdft_initializer

"""Tools for initializing a (ML)-DFT trajectory with OF-DFT."""

from warnings import warn

from ase import units
import ase.io
from ase.md import MDLogger
from ase.md.langevin import Langevin
from ase.io.trajectory import Trajectory
from ase.md.velocitydistribution import MaxwellBoltzmannDistribution

try:
    from dftpy.api.api4ase import DFTpyCalculator
    from dftpy.config import DefaultOption, OptionFormat
except ModuleNotFoundError:
    pass


[docs] class OFDFTInitializer: """ Initializes a trajectory using OF-DFT. Parameters ---------- parameters : mala.Parameters MALA parameters object used to create this instance. atoms : ase.Atoms Initial atomic configuration for which an equilibrated configuration is to be created. Attributes ---------- parameters : mala.mala.common.parameters.ParametersDataGeneration MALA data generation parameters object. atoms : ase.Atoms Initial atomic configuration for which an equilibrated configuration is to be created. dftpy_configuration : dict Dictionary containing the DFTpy configuration. Will partially be populated via the MALA parameters object. """ def __init__(self, parameters, atoms): warn( "The class OFDFTInitializer is experimental. The algorithms " "within have been tested, but the API may still be subject to " "large changes." ) self.atoms = atoms self.parameters = parameters.datageneration # Check that only one element is used in the atoms. number_of_elements = len(set([x.symbol for x in self.atoms])) if number_of_elements > 1: raise Exception( "OF-DFT-MD initialization can only work with one element." ) self.dftpy_configuration = DefaultOption() self.dftpy_configuration["PATH"][ "pppath" ] = self.parameters.local_psp_path self.dftpy_configuration["PP"][ self.atoms[0].symbol ] = self.parameters.local_psp_name self.dftpy_configuration["OPT"]["method"] = self.parameters.ofdft_kedf self.dftpy_configuration["KEDF"]["kedf"] = "WT" self.dftpy_configuration["JOB"]["calctype"] = "Energy Force"
[docs] def get_equilibrated_configuration(self, logging_period=None): """ Calculate the (OF-DFT-MD) equilibrated atomic configuration. Parameters ---------- logging_period : int If not None, a .log and .traj file will be filled with snapshot information every logging_period steps. Returns ------- equilibrated_configuration : ase.Atoms Equilibrated atomic configuration. """ # Set the DFTPy configuration. conf = OptionFormat(self.dftpy_configuration) # Create the DFTPy Calculator. calc = DFTpyCalculator(config=conf) self.atoms.set_calculator(calc) # Create the initial velocities, and dynamics object. MaxwellBoltzmannDistribution( self.atoms, temperature_K=self.parameters.ofdft_temperature, force_temp=True, ) dyn = Langevin( self.atoms, self.parameters.ofdft_timestep * units.fs, temperature_K=self.parameters.ofdft_temperature, friction=self.parameters.ofdft_friction, ) # If logging is desired, do the logging. if logging_period is not None: dyn.attach( MDLogger( dyn, self.atoms, "mala_of_dft_md.log", header=False, stress=False, peratom=True, mode="w", ), interval=logging_period, ) traj = Trajectory("mala_of_dft_md.traj", "w", self.atoms) dyn.attach(traj.write, interval=logging_period) # Let the OF-DFT-MD run. ase.io.write("POSCAR_initial", self.atoms, "vasp") dyn.run(self.parameters.ofdft_number_of_timesteps) ase.io.write("POSCAR_equilibrated", self.atoms, "vasp")